kombine

kombine is an ensemble sampler built for efficiently exploring multimodal distributions. By using estimates of ensemble’s instantaneous distribution as a proposal, it achieves very fast burnin, followed by sampling with very short autocorrelation times. Contents:

Example Usage

Construct an 8-D bimodal target distribution:

import numpy as np

class Target(object):
    def __init__(self, ndim, nmodes):
        # Generate random inverse variances for each dimension
        self.ivar = 1. / np.random.rand(ndim)

        # Space modes 5-sigma apart
        std = np.sqrt(1/self.ivar)
        self.means = 5 * std * np.arange(nmodes)[:, np.newaxis]

    def __call__(self, x):
        ivar, means = self.ivar, self.means
        lnprobs = [-np.sum(ivar * (x - mu) ** 2)/2 for mu in means]
        return np.logaddexp.reduce(lnprobs)

ndim, nmodes = 8, 2
lnprob = Target(ndim, nmodes)

Sample the target distribution:

import kombine

nwalkers = 500
sampler = kombine.Sampler(nwalkers, ndim, lnprob)

p0 = 5 * (5 * np.random.rand(nwalkers, ndim) - 1)
p, _, _ = sampler.burnin(p0)

API Documentation